Sains Malaysiana 54(8)(2025): 2075-2086

http://doi.org/10.17576/jsm-2025-5408-16

 

Radiation Dose Study of LINAC Source around Healthy Organs in Cancer Examination using Farmer Chamber Ionization Detector

(Kajian Dos Sinaran Sumber LINAC di Sekitar Organ Sihat dalam Pemeriksaan Kanser menggunakan Pengesan Kebuk Pengionan Petani)

 


RAMACOS FARDELA1,*, EGA SEPTRYAN CANDRA1, DIAN MILVITA1, DEDI MARDIANSYAH1, RIDWAN2 & FIQI DIYONA3

 

1Department of Physics, Faculty of Mathematics and Natural Science, Universitas Andalas, Sumatera Barat, 25163, Indonesia

2Healthineers Company, Forchheim-91301, Germany

3Medical Physics, Radiotherapy Installation, Unand Hospital, Padang, 25176, Indonesia

 

Received: 26 December 2024/Accepted: 23 June 2025

 

Abstract

Cancer treatment using ionizing radiation is known to cause damage to healthy tissue around the target. Therefore, this study aimed to measure the dose in the area around the cancer target to ensure the amount received by the patient does not exceed the specified tolerance limit. Measurements were performed using a Farmer-type ionization chamber detector on a phantom slab. The variations in the field area used were 5 × 5 cm2 and 10 × 10 cm2 at depths of 1.5 cm, 4 cm, 6 cm, 8 cm, and 10 cm, as well as a distance of 3 cm, 5 cm, 7 cm, 10 cm, and 15 cm outside the radiation field. The dose value was measured based on the IAEA TRS No.398 protocol. The results showed that the percentage of the dose decreased below 10% at a distance of 5 cm for a field area of 5 × 5 cm2. Meanwhile, for a field area of 10 × 10 cm2, the percentage of the dose decreased below 10% after passing a distance of 7 cm from the edge of the radiation field. Based on the results, the percentage of the measured dose was greater for the enlarged depth. Areas outside the cancer target still receive unneeded radiation doses. The value of the dose received depends on the energy used, the size of the field, and the distance from the edge of the field.

Keywords: Cancer; depth; dose; edge distance; LINAC

Abstrak

Rawatan kanser menggunakan sinaran pengionan diketahui boleh menyebabkan kerosakan pada tisu sihat di sekeliling sasaran. Justeru, penyelidikan ini bertujuan untuk mengukur dos di kawasan sekitar sasaran kanser bagi memastikan jumlah yang diterima pesakit tidak melebihi had toleransi yang ditetapkan. Pengukuran dilakukan menggunakan pengesan kebuk pengionan jenis Petani pada papak fantom. Variasi luas lapangan yang digunakan ialah 5 × 5 cm2 dan 10 × 10 cm2 pada kedalaman 1.5 cm, 4 cm, 6 cm, 8 cm dan 10 cm serta jarak 3 cm, 5 cm, 7 cm, 10 cm dan 15 cm di luar medan sinaran. Nilai dos diukur berdasarkan protokol IAEA TRS No. 398. Keputusan menunjukkan bahawa peratusan dos menurun di bawah 10% pada jarak 5 cm untuk kawasan medan seluas 5 × 5 cm2. Manakala, bagi kawasan medan seluas 10 × 10 cm2, peratusan dos menurun di bawah 10% selepas melepasi jarak 7 cm dari tepi medan sinaran. Berdasarkan keputusan, peratusan dos yang diukur adalah lebih besar untuk kedalaman yang diperbesarkan. Kawasan di luar sasaran kanser masih menerima dos sinaran yang tidak diperlukan. Nilai dos yang diterima bergantung pada tenaga yang digunakan, saiz medan dan jarak dari tepi medan.

Kata kunci: Dos; jarak tepi; kanser; kedalaman; LINAC

 

REFERENCES

Abdelaal, A.M., Attalla, E.M. & Elshemey, W.M. 2020. Estimation of out-of-field dose variation using Markus ionization chamber detector. SciMedicine Journal 2(1): 8-15. https://doi.org/10.28991/scimedj-2020-0201-2

Abdelaal, A.M., Attalla, E.M. & Elshemey, W.M. 2017. Dose estimation outside radiation field using Pinpoint and Semiflex ionization chamber detectors. Radiation Physics and Chemistry 139: 120-125. https://doi.org/10.1016/j.radphyschem.2017.04.006

Antolak, J.A. & Rosen, I.I. 1999. Planning target volumes for radiotherapy: How much margin is needed? International Journal of Radiation Oncology Biology Physics 44(5): 1165-1170. https://doi.org/10.1016/S0360-3016(99)00117-0

Balasubramanian, R., Sellakumar, P., Bilimagga, R.S., Supe, S.S. & Sankar, B.N. 2006. Measurements of peripheral dose for multileaf collimator based linear accelerator. Reports of Practical Oncology and Radiotherapy 11(6): 281-285. https://doi.org/10.1016/S1507-1367(06)71073-2

Bosse, C., Narayanasamy, G., Saenz, D., Myers, P., Kirby, N., Rasmussen, K., Mavroidis, P., Papanikolaou, N. & Stathakis, S. 2020. Dose calculation comparisons between three modern treatment planning systems. Journal of Medical Physics 45(3): 143-147. https://doi.org/10.4103/jmp.JMP_111_19

Bresolin, A., Bonfantini, F., Stucchi, C.G., Mongioj, V., Carrara, M. & Pignoli, E. 2017. Study of the ionization chamber response to flattening-filter-free photon beams. Radiation Measurements 97: 47-53. https://doi.org/10.1016/j.radmeas.2016.12.011

Burnet, N.G., Thomas, S.J., Burton, K.E. & Jefferies, S.J. 2004. Defining the tumour and target volumes for radiotherapy. Cancer Imaging 4(2): 153-161. https://doi.org/10.1102/1470-7330.2004.0054

Connell, P.P. & Hellman, S. 2009. Advances in radiotherapy and implications for the next century: A historical perspective. Cancer Research 69(2): 383-392. https://doi.org/10.1158/0008-5472.CAN-07-6871

De Saint-Hubert, M., Suesselbeck, F., Vasi, F., Stuckmann, F., Rodriguez, M., Dabin, J., Timmermann, B., Thierry-Chef, I., Schneider, U. & Brualla, L. 2022. Experimental validation of an analytical program and a Monte Carlo simulation for the computation of the far out-of-field dose in external beam photon therapy applied to pediatric patients. Frontiers in Oncology 12: 882506. https://doi.org/10.3389/fonc.2022.882506

DeWerd, L.A. & Kissick, M. 2013. The Phantoms of Medical and Health Physics: Devices for Research and Development. New York: Springer.

Dinh, C.N. & Nowak, J. 2021. Natural radioactivity in thermal waters: A case study from poland. Energies 14(3): 541. https://doi.org/10.3390/en14030541

Gargett, M.A., Briggs, A.R. & Booth, J.T. 2020. Water equivalence of a solid phantom material for radiation dosimetry applications. Physics and Imaging in Radiation Oncology 14: 43-47. https://doi.org/10.1016/j.phro.2020.05.003

Garrett, L., Hardcastle, N., Yeo, A., Lonski, P., Franich, R. & Kron, T. 2021. Out-of-field dose in stereotactic radiotherapy for paediatric patients. Physics and Imaging in Radiation Oncology 19: 1-5. https://doi.org/10.1016/j.phro.2021.05.006

Hong, J.W., Lee, H.K. & Cho, J.H. 2015. Comparison of the photon charge between water and solid phantom depending on depth. International Journal of Radiation Research 13(3): 229-234.

Howell, R.M., Scarboro, S.B., Kry, S.F. & Yaldo, D.Z. 2010. Accuracy of out-of-field dose calculations by a commercial treatment planning system. Physics in Medicine and Biology 55(23): 6999-7008. https://doi.org/10.1088/0031-9155/55/23/S03

Huang, Y.J., Kuo, T.C., Chen, C.Y., Chang, C.H., Wu, P.C. & Wu, T.H. 2009. The design and implementation of a solar tracking generating power system. Engineering Letters 17: 4.

Inayat, A., Nassef, A.M., Rezk, H., Sayed, E.T., Abdelkareem, M.A. & Olabi, A.G. 2019. Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30. Science of the Total Environment 666: 821-827. https://doi.org/10.1016/j.scitotenv.2019.02.321

International Atomic Energy Agency. 2008. IAEA Technical Report Series. European Journal of Nuclear Medicine and Molecular Imaging 35(5): 1030-1031. https://doi.org/10.1007/s00259-008-0767-4

Khan, F.M. 2014. The Physics of Radiation Therapy (5 ed.). Lippincott Williams & Wilkins.

Kry, S.F., Titt, U., Pönisch, F., Followill, D., Vassiliev, O.N., White, R.A., Mohan, R. & Salehpour, M. 2006. A Monte Carlo model for calculating out-of-field dose from a varian 6 MV beam. Medical Physics 33(11): 4405-4413. https://doi.org/10.1118/1.2360013

Lam, K.L., Muthuswamy, M.S. & Ten Haken, R.K. 1996. Flattening-filter-based empirical methods to parametrize the head scatter factor. Medical Physics 23(3): 343-352. https://doi.org/10.1118/1.597798

Li, X.A., Ma, C.M. & Salhani, D. 1997. Measurement of percentage depth dose and lateral beam profile for kilovoltage x-ray therapy beams. Physics in Medicine and Biology 42(12): 2561-2568. https://doi.org/10.1088/0031-9155/42/12/019

Licona, I., Figueroa-Medina, E. & Gamboa-deBuen, I. 2017. Dose distributions and percentage depth dose measurements for a total skin electron therapy. Radiation Measurements 106: 365-372. https://doi.org/10.1016/j.radmeas.2016.12.002

Liu, Q., Liang, J., Zhou, D., Krauss, D.J., Chen, P.Y. & Yan, D. 2018. Dosimetric evaluation of incorporating patient geometric variations into adaptive plan optimization through probabilistic treatment planning in head and neck cancers. International Journal of Radiation Oncology Biology Physics 101(4): 985-997. https://doi.org/10.1016/j.ijrobp.2018.03.062

Marín, A., Martín, M., Liñán, O., Alvarenga, F., López, M., Fernández, L., Büchser, D. & Cerezo, L. 2015. Bystander effects and radiotherapy. Reports of Practical Oncology and Radiotherapy 20(1): 12-21. https://doi.org/10.1016/j.rpor.2014.08.004

Matuszak, N., Kruszyna-Mochalska, M., Skrobala, A., Ryczkowski, A., Romanski, P., Piotrowski, I., Kulcenty, K., Suchorska, W.M. & Malicki, J. 2022. Nontarget and out-of-field doses from electron beam radiotherapy. Life 12(6): 858. https://doi.org/10.3390/life12060858

Mazonakis, M. & Damilakis, J. 2021. Out-of-field organ doses and associated risk of cancer development following radiation therapy with photons. Physica Medica 90: 73-82. https://doi.org/10.1016/j.ejmp.2021.09.005

Mohan, R. 2022. A review of proton therapy - Current status and future directions. Precision Radiation Oncology 6(2): 164-176. https://doi.org/10.1002/pro6.1149

Mohsin, N.I., Zakaria, A., Abdullah, R. & Wong, M.F. 2014. Peripheral dose measurement for 6 MV photon beam. Journal of Medical Physics and Biophysics 1(1): 7-9.

Momeni, N.S., Afraydoon, S., Hamzian, N., Nikfarjam, A., Ghasemabad, M.V., Dehkordi, S.A., Shabani, M., Dehastani, M. & Heldari, A. 2023. The estimation of radiation dose to out-of-field points of organs at risk in block and MLC shielded fields in lung cancer radiation therapy. Frontiers in Biomedical Technologies 10(2): 188-194. https://doi.org/10.18502/fbt.v10i2.12223

Naji, N.A.R., Alrubai, T.A., Ridha, A.A., Nori, W. & Najma, M.A.A. 2022. Effect of the Three Dimensional Conformal Radiotherapy (3DCRT) peripheral dose on the nipple region of the opposite breast of the obese cancer patients. ISMSIT 2022 - 6th International Symposium on Multidisciplinary Studies and Innovative Technologies. pp. 194-197. https://doi.org/10.1109/ISMSIT56059.2022.9932866

Oancea, C., Granja, C., Marek, L., Jakubek, J., Šolc, J., Bodenstein, E., Gantz, S., Pawelke, J. & Pivec, J. 2023. Out-of-field measurements and simulations of a proton pencil beam in a wide range of dose rates using a Timepix3 detector: Dose rate, flux and LET. Physica Medica 106: 102529. https://doi.org/10.1016/j.ejmp.2023.102529

Park, P.C., Zhu, X.R., Lee, A.K., Sahoo, N., Melancon, A.D., Zhang, L. & Dong, L. 2012. A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties. International Journal of Radiation Oncology Biology Physics 82(2): 329-336. https://doi.org/10.1016/j.ijrobp.2011.05.011

Pazzaglia, S., Eidemüller, M., Lumniczky, K., Mancuso, M., Ramadan, R., Stolarczyk, L. & Moertl, S. 2022. Out-of-field effects: Lessons learned from partial body exposure. Radiation and Environmental Biophysics 61(4): 485-504. https://doi.org/10.1007/s00411-022-00988-0

Podgorsak, E. 2005. Radiation Oncology Physics: A Handbook for Teachers and Students. International Atomic Energy Agency.

Raj, A., Khanna, D., Hridya, V.T., Padmanabhan, S. & Mohandass, P. 2022. A comparison study of out-of-field photon dosimetry between two varian linear accelerators. Onkologia i Radioterapia 16(9): 16-20.

Saminathan, S., Godson, H.F., Ponmalar, R., Manickam, R., Mazarello, J. & Fernandes, R. 2016. Dosimetric performance of newly developed farmer-Type ionization chamber in radiotherapy practice. Technology in Cancer Research and Treatment 15(6): NP113-NP120. https://doi.org/10.1177/1533034615621635

Sánchez-Nieto, B., Medina-Ascanio, K.N., Rodríguez-Mongua, J.L., Doerner, E. & Espinoza, I. 2020. Study of out-of-field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations. Medical Physics 47(9): 4616-4625. https://doi.org/10.1002/mp.14356

Sung, S-Y., Lee, H-Y., Tu, P-C., Lin, C-H., Yu, P-C., Lui, L.T., Shaw, S., Wu, C-J. & Nien, H-H. 2017. In vivo dosimetry of skin surface for breast cancer radiotherapy using intensity-modulated radiation therapy technique and helical tomotherapy. Therapeutic Radiology and Oncology 1: 2. https://doi.org/10.21037/tro.2017.11.01

Swanpalmer, J. 2024. Investigation of ionization chamber-specific beam quality correction factor (kQ,Q0) used for absorbed dose determination in megavoltage photon beams. Radiation Measurements 176: 107208. https://doi.org/10.1016/j.radmeas.2024.107208

Taylor, M. & Kron, T. 2011. Consideration of the radiation dose delivered away from the treatment field to patients in radiotherapy. Journal of Medical Physics 36(2): 59-71. https://doi.org/10.4103/0971-6203.79686

Technical Report Series (TRS) No. 398. 2000. Absorbed Dose Determination in External Beam Radiotherapy. Vienna: International Atomic Energy Agency.

Wang, K. & Tepper, J.E. 2021. Radiation therapy‐associated toxicity: Etiology, management, and prevention. CA: A Cancer Journal for Clinicians 71(5): 437-454. https://doi.org/10.3322/caac.21689

Wiezorek, T., Georg, D., Schwedas, M., Salz, H. & Wendt, T.G. 2009. Experimental determination of peripheral photon dose components for different IMRT techniques and linear accelerators. Zeitschrift Fur Medizinische Physik 19(2): 120-128. https://doi.org/10.1016/j.zemedi.2009.01.008

Zhu, T.C. & Biarngard, B.E. 1994. The head-scatter factor for small field sizes. Medical Physics 21(1): 65-68. https://doi.org/10.1118/1.597256

 

*Corresponding author; email: ramacosfardela@sci.unand.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next